Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834238

RESUMO

Infection with Ebola virus (EBOV) is responsible for hemorrhagic fever in humans with a high mortality rate. Combined efforts of prevention and therapeutic intervention are required to tackle highly variable RNA viruses, whose infections often lead to outbreaks. Here, we have screened the 2P2I3D chemical library using a nanoluciferase-based protein complementation assay (NPCA) and isolated two compounds that disrupt the interaction of the EBOV protein fragment VP35IID with the N-terminus of the dsRNA-binding proteins PKR and PACT, involved in IFN response and/or intrinsic immunity, respectively. The two compounds inhibited EBOV infection in cell culture as well as infection by measles virus (MV) independently of IFN induction. Consequently, we propose that the compounds are antiviral by restoring intrinsic immunity driven by PACT. Given that PACT is highly conserved across mammals, our data support further testing of the compounds in other species, as well as against other negative-sense RNA viruses.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Animais , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/metabolismo , Ebolavirus/fisiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Mamíferos
2.
Molecules ; 28(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770826

RESUMO

The chemokine receptor CXCR4 and its ligand CXCL12 regulate leukocyte trafficking, homeostasis and functions and are potential therapeutic targets in many diseases such as HIV-1 infection and cancers. Here, we identified new CXCR4 ligands in the CERMN chemical library using a FRET-based high-throughput screening assay. These are bis-imidazoline compounds comprising two imidazole rings linked by an alkyl chain. The molecules displace CXCL12 binding with submicromolar potencies, similarly to AMD3100, the only marketed CXCR4 ligand. They also inhibit anti-CXCR4 mAb 12G5 binding, CXCL12-mediated chemotaxis and HIV-1 infection. Further studies with newly synthesized derivatives pointed out to a role of alkyl chain length on the bis-imidazoline properties, with molecules with an even number of carbons equal to 8, 10 or 12 being the most potent. Interestingly, these differ in the functions of CXCR4 that they influence. Site-directed mutagenesis and molecular docking predict that the alkyl chain folds in such a way that the two imidazole groups become lodged in the transmembrane binding cavity of CXCR4. Results also suggest that the alkyl chain length influences how the imidazole rings positions in the cavity. These results may provide a basis for the design of new CXCR4 antagonists targeting specific functions of the receptor.


Assuntos
Imidazolinas , Transdução de Sinais , Ligantes , Simulação de Acoplamento Molecular , Receptores CXCR4 , Imidazóis/farmacologia
3.
Cell Rep ; 41(2): 111472, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36223753

RESUMO

The pyrin inflammasome acts as a guard of RhoA GTPases and is central to immune defenses against RhoA-manipulating pathogens. Pyrin activation proceeds in two steps. Yet, the second step is still poorly understood. Using cells constitutively activated for the pyrin step 1, a chemical screen identifies etiocholanolone and pregnanolone, two catabolites of testosterone and progesterone, acting at low concentrations as specific step 2 activators. High concentrations of these metabolites fully and rapidly activate pyrin, in a human specific, B30.2 domain-dependent manner and without inhibiting RhoA. Mutations in MEFV, encoding pyrin, cause two distinct autoinflammatory diseases pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND) and familial Mediterranean fever (FMF). Monocytes from PAAND patients, and to a lower extent from FMF patients, display increased responses to these metabolites. This study identifies an unconventional pyrin activation mechanism, indicates that endogenous steroid catabolites can drive autoinflammation, through the pyrin inflammasome, and explains the "steroid fever" described in the late 1950s upon steroid injection in humans.


Assuntos
Febre Familiar do Mediterrâneo , Inflamassomos , Pirina , Etiocolanolona , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/metabolismo , Humanos , Inflamassomos/metabolismo , Mutação , Pregnanolona , Progesterona , Pirina/genética , Pirina/metabolismo , Testosterona
4.
Nucleic Acids Res ; 49(13): 7695-7712, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232992

RESUMO

The multidomain non-structural protein 3 (Nsp3) is the largest protein encoded by coronavirus (CoV) genomes and several regions of this protein are essential for viral replication. Of note, SARS-CoV Nsp3 contains a SARS-Unique Domain (SUD), which can bind Guanine-rich non-canonical nucleic acid structures called G-quadruplexes (G4) and is essential for SARS-CoV replication. We show herein that the SARS-CoV-2 Nsp3 protein also contains a SUD domain that interacts with G4s. Indeed, interactions between SUD proteins and both DNA and RNA G4s were evidenced by G4 pull-down, Surface Plasmon Resonance and Homogenous Time Resolved Fluorescence. These interactions can be disrupted by mutations that prevent oligonucleotides from folding into G4 structures and, interestingly, by molecules known as specific ligands of these G4s. Structural models for these interactions are proposed and reveal significant differences with the crystallographic and modeled 3D structures of the SARS-CoV SUD-NM/G4 interaction. Altogether, our results pave the way for further studies on the role of SUD/G4 interactions during SARS-CoV-2 replication and the use of inhibitors of these interactions as potential antiviral compounds.


Assuntos
COVID-19/virologia , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Quadruplex G , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2 , Sequência de Aminoácidos , Proteases Semelhantes à Papaína de Coronavírus/química , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análise Espectral , Relação Estrutura-Atividade , Replicação Viral
5.
Nat Commun ; 12(1): 3025, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021152

RESUMO

Assessment of the cumulative incidence of SARS-CoV-2 infections is critical for monitoring the course and extent of the COVID-19 epidemic. Here, we report estimated seroprevalence in the French population and the proportion of infected individuals who developed neutralising antibodies at three points throughout the first epidemic wave. Testing 11,000 residual specimens for anti-SARS-CoV-2 IgG and neutralising antibodies, we find nationwide seroprevalence of 0.41% (95% CI: 0.05-0.88) mid-March, 4.14% (95% CI: 3.31-4.99) mid-April and 4.93% (95% CI: 4.02-5.89) mid-May 2020. Approximately 70% of seropositive individuals have detectable neutralising antibodies. Infection fatality rate is 0.84% (95% CI: 0.70-1.03) and increases exponentially with age. These results confirm that the nationwide lockdown substantially curbed transmission and that the vast majority of the French population remained susceptible to SARS-CoV-2 in May 2020. Our study shows the progression of the first epidemic wave and provides a framework to inform the ongoing public health response as viral transmission continues globally.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , COVID-19/epidemiologia , COVID-19/virologia , Criança , Pré-Escolar , Epidemias , Feminino , França/epidemiologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Prevalência , SARS-CoV-2/fisiologia , Estudos Soroepidemiológicos , Adulto Jovem
6.
Eur J Immunol ; 51(1): 180-190, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33259646

RESUMO

Although the COVID-19 pandemic peaked in March/April 2020 in France, the prevalence of infection is barely known. Using high-throughput methods, we assessed herein the serological response against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of 1847 participants working in three sites of an institution in Paris conurbation. In May-July 2020, 11% (95% confidence interval [CI]: 9.7-12.6) of serums were positive for IgG against the SARS-CoV-2 N and S proteins, and 9.5% (95% CI: 8.2-11.0) were neutralizer in pseudo-typed virus assays. The prevalence of seroconversion was 11.6% (95% CI: 10.2-13.2) when considering positivity in at least one assay. In 5% of RT-qPCR positive individuals, no systemic IgGs were detected. Among immune individuals, 21% had been asymptomatic. Anosmia (loss of smell) and ageusia (loss of taste) occurred in 52% of the IgG-positive individuals and in 3% of the negative ones. In contrast, 30% of the anosmia-ageusia cases were seronegative, suggesting that the true prevalence of infection may have reached 16.6%. In sera obtained 4-8 weeks after the first sampling, anti-N and anti-S IgG titers and neutralization activity in pseudo-virus assay declined by 31%, 17%, and 53%, resulting thus in half-life of 35, 87, and 28 days, respectively. The population studied is representative of active workers in Paris. The short lifespan of the serological systemic responses suggests an underestimation of the true prevalence of infection.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pandemias , Paris/epidemiologia , Estudos Soroepidemiológicos , Fatores de Tempo
7.
Eur J Med Chem ; 167: 124-132, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30769241

RESUMO

Inosine-5'-monophosphate dehydrogenase (IMPDH) is an essential enzyme in many bacterial pathogens and is considered as a potential drug target for the development of new antibacterial agents. Our recent work has revealed the crucial role of one of the two structural domains (i.e. Bateman domain) in the regulation of the quaternary structure and enzymatic activity of bacterial IMPDHs. Thus, we have screened chemical libraries to search for compounds targeting the Bateman domain and identified first in-class allosteric inhibitors of a bacterial IMPDH. These inhibitors were shown to counteract the activation by the natural positive effector, MgATP, and to block the enzyme in its apo conformation (low affinity for IMP). Our structural studies demonstrate the versatility of the Bateman domain to accommodate totally unrelated chemical scaffolds and pave the way for the development of allosteric inhibitors, an avenue little explored until now.


Assuntos
Inibidores Enzimáticos/farmacologia , IMP Desidrogenase/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Regulação Alostérica , Apoproteínas/química , Apoproteínas/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Domínios Proteicos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
8.
Artigo em Inglês | MEDLINE | ID: mdl-29632009

RESUMO

Aspergillus fumigatus can cause pulmonary aspergillosis in immunocompromised patients and is associated with a high mortality rate due to a lack of reliable treatment options. This opportunistic pathogen requires zinc in order to grow and cause disease. Novel compounds that interfere with fungal zinc metabolism may therefore be of therapeutic interest. We screened chemical libraries containing 59,223 small molecules using a resazurin assay that compared their effects on an A. fumigatus wild-type strain grown under zinc-limiting conditions and on a zinc transporter knockout strain grown under zinc-replete conditions to identify compounds affecting zinc metabolism. After a first screen, 116 molecules were selected whose inhibitory effects on fungal growth were further tested by using luminescence assays and hyphal length measurements to confirm their activity, as well as by toxicity assays on HeLa cells and mice. Six compounds were selected following a rescreening, of which two were pyrazolones, two were porphyrins, and two were polyaminocarboxylates. All three groups showed good in vitro activity, but only one of the polyaminocarboxylates was able to significantly improve the survival of immunosuppressed mice suffering from pulmonary aspergillosis. This two-tier screening approach led us to the identification of a novel small molecule with in vivo fungicidal effects and low murine toxicity that may lead to the development of new treatment options for fungal infections by administration of this compound either as a monotherapy or as part of a combination therapy.


Assuntos
Antifúngicos/uso terapêutico , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Aspergilose Pulmonar/tratamento farmacológico , Aspergilose Pulmonar/metabolismo , Zinco/metabolismo , Animais , Modelos Animais de Doenças , Medições Luminescentes , Camundongos , Testes de Sensibilidade Microbiana , Pirazolonas/uso terapêutico
9.
Sci Rep ; 7(1): 16129, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170442

RESUMO

PKR is a cellular kinase involved in the regulation of the integrative stress response (ISR) and pro-inflammatory pathways. Two N-terminal dsRNA Binding Domains (DRBD) are required for activation of PKR, by interaction with either dsRNA or PACT, another cellular DRBD-containing protein. A role for PKR and PACT in inflammatory processes linked to neurodegenerative diseases has been proposed and raised interest for pharmacological PKR inhibitors. However, the role of PKR in inflammation is subject to controversy. We identified the flavonoid luteolin as an inhibitor of the PKR/PACT interaction at the level of their DRBDs using high-throughput screening of chemical libraries by homogeneous time-resolved fluorescence. This was further validated using NanoLuc-Based Protein Complementation Assay. Luteolin inhibits PKR phosphorylation, the ISR and the induction of pro-inflammatory cytokines in human THP1 macrophages submitted to oxidative stress and toll-like receptor (TLR) agonist. Similarly, luteolin inhibits induction of pro-inflammatory cytokines in murine microglial macrophages. In contrast, luteolin increased activation of the inflammasome, in a PKR-independent manner. Collectively, these data delineate the importance of PKR in the inflammation process to the ISR and induction of pro-inflammatory cytokines. Pharmacological inhibitors of PKR should be used in combination with drugs targeting directly the inflammasome.


Assuntos
Inflamação/metabolismo , Proteínas de Ligação a RNA/metabolismo , eIF-2 Quinase/metabolismo , Células HEK293 , Humanos , Inflamação/imunologia , Fosforilação/genética , Fosforilação/fisiologia , Ligação Proteica/genética , Ligação Proteica/fisiologia , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética , eIF-2 Quinase/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-28807907

RESUMO

De novo pyrimidine biosynthesis is a key metabolic pathway involved in multiple biosynthetic processes. Here, we identified an original series of 3-(1H-indol-3-yl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one derivatives as a new class of pyrimidine biosynthesis inhibitors formed by two edge-fused polycyclic moieties. We show that identified compounds exhibit broad-spectrum antiviral activity and immunostimulatory properties, in line with recent reports linking de novo pyrimidine biosynthesis with innate defense mechanisms against viruses. Most importantly, we establish that pyrimidine deprivation can amplify the production of both type I and type III interferons by cells stimulated with retinoic acid-inducible gene 1 (RIG-I) ligands. Altogether, our results further expand the current panel of pyrimidine biosynthesis inhibitors and illustrate how the production of antiviral interferons is tightly coupled to this metabolic pathway. Functional and structural similarities between this new chemical series and dicoumarol, which was reported before to inhibit pyrimidine biosynthesis at the dihydroorotate dehydrogenase (DHODH) step, are discussed.


Assuntos
Antivirais/farmacologia , Vírus Chikungunya/imunologia , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Interferon Tipo I/biossíntese , Interferons/biossíntese , Vírus do Sarampo/imunologia , Pirimidinas/biossíntese , Antivirais/química , Linhagem Celular , Cromonas/química , Dicumarol/farmacologia , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Imunidade Inata/imunologia , Indóis/química , Interferon Tipo I/imunologia , Interferons/imunologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Relação Estrutura-Atividade , Interferon lambda
11.
J Med Chem ; 60(17): 7425-7433, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28846409

RESUMO

In this study, we aimed to decipher the natural resistance mechanisms of mycobacteria against novel compounds isolated by whole-cell-based high-throughput screening (HTS). We identified active compounds using Mycobacterium aurum. Further analyses were performed to determine the resistance mechanism of M. smegmatis against one hit, 3-bromo-N-(5-nitrothiazol-2-yl)-4-propoxybenzamide (3), which turned out to be an analog of the drug nitazoxanide (1). We found that the repression of the gene nfnB coding for the nitroreductase NfnB was responsible for the natural resistance of M. smegmatis against 3. The overexpression of nfnB resulted in sensitivity of M. smegmatis to 3. This compound must be metabolized into hydroxylamine intermediate for exhibiting antibacterial activity. Thus, we describe, for the first time, the activity of a mycobacterial nitroreductase against 1 analogs, highlighting the differences in the metabolism of nitro compounds among mycobacterial species and emphasizing the potential of nitro drugs as antibacterials in various bacterial species.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Nitrorredutases/metabolismo , Tiazóis/química , Tiazóis/farmacologia , Regulação para Baixo , Farmacorresistência Bacteriana , Humanos , Mycobacterium/efeitos dos fármacos , Mycobacterium/enzimologia , Mycobacterium/genética , Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium smegmatis/genética , Nitrocompostos , Nitrorredutases/genética
12.
Sci Rep ; 7(1): 2561, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566766

RESUMO

The type I interferon response plays a pivotal role in host defense against infectious agents and tumors, and promising therapeutic approaches rely on small molecules designed to boost this system. To identify such compounds, we developed a high-throughput screening assay based on HEK-293 cells expressing luciferase under the control of Interferon-Stimulated Response Elements (ISRE). An original library of 10,000 synthetic compounds was screened, and we identified a series of 1H-benzimidazole-4-carboxamide compounds inducing the ISRE promoter sequence, specific cellular Interferon-Stimulated Genes (ISGs), and the phosphorylation of Interferon Regulatory Factor (IRF) 3. ISRE induction by ChX710, a prototypical member of this chemical series, was dependent on the adaptor MAVS and IRF1, but was IRF3 independent. Although it was unable to trigger type I IFN secretion per se, ChX710 efficiently primed cellular response to transfected plasmid DNA as assessed by potent synergistic effects on IFN-ß secretion and ISG expression levels. This cellular response was dependent on STING, a key adaptor involved in the sensing of cytosolic DNA and immune activation by various pathogens, stress signals and tumorigenesis. Our results demonstrate that cellular response to cytosolic DNA can be boosted with a small molecule, and potential applications in antimicrobial and cancer therapies are discussed.


Assuntos
Ensaios de Triagem em Larga Escala , Fator Regulador 3 de Interferon/genética , Interferon Tipo I/química , Bibliotecas de Moléculas Pequenas/farmacologia , Citosol/química , DNA/química , DNA/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/antagonistas & inibidores , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Elementos de Resposta/genética , Bibliotecas de Moléculas Pequenas/química , Transfecção
13.
Antimicrob Agents Chemother ; 60(3): 1438-49, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26666917

RESUMO

In a search for new antifungal compounds, we screened a library of 4,454 chemicals for toxicity against the human fungal pathogen Aspergillus fumigatus. We identified sr7575, a molecule that inhibits growth of the evolutionary distant fungi A. fumigatus, Cryptococcus neoformans, Candida albicans, and Saccharomyces cerevisiae but lacks acute toxicity for mammalian cells. To gain insight into the mode of inhibition, sr7575 was screened against 4,885 S. cerevisiae mutants from the systematic collection of haploid deletion strains and 977 barcoded haploid DAmP (decreased abundance by mRNA perturbation) strains in which the function of essential genes was perturbed by the introduction of a drug resistance cassette downstream of the coding sequence region. Comparisons with previously published chemogenomic screens revealed that the set of mutants conferring sensitivity to sr7575 was strikingly narrow, affecting components of the endoplasmic reticulum-associated protein degradation (ERAD) stress response and the ER membrane protein complex (EMC). ERAD-deficient mutants were hypersensitive to sr7575 in both S. cerevisiae and A. fumigatus, indicating a conserved mechanism of growth inhibition between yeast and filamentous fungi. Although the unfolded protein response (UPR) is linked to ERAD regulation, sr7575 did not trigger the UPR in A. fumigatus and UPR mutants showed no enhanced sensitivity to the compound. The data from this chemogenomic analysis demonstrate that sr7575 exerts its antifungal activity by disrupting ER protein quality control in a manner that requires ERAD intervention but bypasses the need for the canonical UPR. ER protein quality control is thus a specific vulnerability of fungal organisms that might be exploited for antifungal drug development.


Assuntos
Antifúngicos/farmacologia , Antifúngicos/toxicidade , Aspergillus fumigatus/efeitos dos fármacos , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Animais , Aspergillus fumigatus/genética , Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático/genética , Células HeLa/efeitos dos fármacos , Humanos , Camundongos Endogâmicos , Testes de Sensibilidade Microbiana , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
14.
J Med Chem ; 58(14): 5579-98, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26079043

RESUMO

Following our discovery of human dihydroorotate dehydrogenase (DHODH) inhibition by 2-(3-alkoxy-1H-pyrazol-1-yl)pyrimidine derivatives as well as 2-(4-benzyl-3-ethoxy-5-methyl-1H-pyrazol-1-yl)-5-methylpyridine, we describe here the syntheses and evaluation of an array of azine-bearing analogues. As in our previous report, the structure-activity study of this series of human DHODH inhibitors was based on a phenotypic assay measuring measles virus replication. Among other inhibitors, this round of syntheses and biological evaluation iteration led to the highly active 5-cyclopropyl-2-(4-(2,6-difluorophenoxy)-3-isopropoxy-5-methyl-1H-pyrazol-1-yl)-3-fluoropyridine. Inhibition of DHODH by this compound was confirmed in an array of in vitro assays, including enzymatic tests and cell-based assays for viral replication and cellular growth. This molecule was found to be more active than the known inhibitors of DHODH, brequinar and teriflunomide, thus opening perspectives for its use as a tool or for the design of an original series of immunosuppressive agent. Moreover, because other series of inhibitors of human DHODH have been found to also affect Plasmodium falciparum DHODH, all the compounds were assayed for their effect on P. falciparum growth. However, the modest in vitro inhibition solely observed for two compounds did not correlate with their inhibition of P. falciparum DHODH.


Assuntos
Antivirais/química , Antivirais/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pirazóis/química , Pirazóis/farmacologia , Antivirais/síntese química , Di-Hidro-Orotato Desidrogenase , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Células HEK293 , Humanos , Concentração Inibidora 50 , Vírus do Sarampo/efeitos dos fármacos , Vírus do Sarampo/fisiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Pirazóis/síntese química , Replicação Viral/efeitos dos fármacos
15.
Med Sci (Paris) ; 31(1): 98-104, 2015 Jan.
Artigo em Francês | MEDLINE | ID: mdl-25658737

RESUMO

RNA viruses are responsible for major human diseases such as flu, bronchitis, dengue, hepatitis C or measles. They also represent an emerging threat because of increased worldwide exchanges and human populations penetrating more and more natural ecosystems. Recent progresses in our understanding of cellular pathways controlling viral replication suggest that compounds targeting host cell functions, rather than the virus itself, could inhibit a large panel of RNA viruses. In particular, several academic laboratories and private companies are now seeking molecules that stimulate the host innate antiviral response. One appealing strategy is to identify molecules that induce the large cluster of antiviral genes known as Interferon-Stimulated Genes (ISGs). To reach this goal, we have developed a phenotypic assay based on human cells transfected with a luciferase reporter gene under control of an interferon-stimulated response element (ISRE). This system was used in a high-throughput screening of chemical libraries comprising around 54,000 compounds. Among validated hits, compound DD264 was shown to boost the innate immune response in cell cultures, and displayed a broad-spectrum antiviral activity. While deciphering its mode of action, DD264 was found to target the fourth enzyme of de novo pyrimidine biosynthesis, namely the dihydroorotate dehydrogenase (DHODH). Thus, our data unraveled a yet unsuspected link between pyrimidine biosynthesis and the innate antiviral response.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Imunidade Inata/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pirimidinas/biossíntese , Vírus/imunologia , Antivirais/isolamento & purificação , Di-Hidro-Orotato Desidrogenase , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/isolamento & purificação , Ensaios de Triagem em Larga Escala , Humanos , Fenótipo , Bibliotecas de Moléculas Pequenas/análise
16.
J Med Chem ; 58(2): 860-77, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25558988

RESUMO

From a research program aimed at the design of new chemical entities followed by extensive screening on various models of infectious diseases, an original series of 2-(3-alkoxy-1H-pyrazol-1-yl)pyrimidines endowed with notable antiviral properties were found. Using a whole cell measles virus replication assay, we describe here some aspects of the iterative process that, from 2-(4-benzyl-3-ethoxy-5-methyl-1H-pyrazol-1-yl)pyrimidine, led to 2-(4-(2,6-difluorophenoxy)-3-isopropoxy-5-methyl-1H-pyrazol-1-yl)-5-ethylpyrimidine and a 4000-fold improvement of antiviral activity with a subnanomolar level of inhibition. Moreover, recent precedents in the literature describing antiviral derivatives acting at the level of the de novo pyrimidine biosynthetic pathway led us to determine that the mode of action of this series is based on the inhibition of the cellular dihydroorotate dehydrogenase (DHODH), the fourth enzyme of this pathway. Biochemical studies with recombinant human DHODH led us to measure IC50 as low as 13 nM for the best example of this original series when using 2,3-dimethoxy-5-methyl-6-(3-methyl-2-butenyl)-1,4-benzoquinone (coenzyme Q1) as a surrogate for coenzyme Q10, the cofactor of this enzyme.


Assuntos
Antivirais/síntese química , Inibidores Enzimáticos/síntese química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pirimidinas/síntese química , Antivirais/farmacologia , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/farmacologia , Humanos , Pirimidinas/farmacologia , Relação Estrutura-Atividade
17.
J Vis Exp ; (87)2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24838008

RESUMO

RNA viruses are responsible for major human diseases such as flu, bronchitis, dengue, Hepatitis C or measles. They also represent an emerging threat because of increased worldwide exchanges and human populations penetrating more and more natural ecosystems. A good example of such an emerging situation is chikungunya virus epidemics of 2005-2006 in the Indian Ocean. Recent progresses in our understanding of cellular pathways controlling viral replication suggest that compounds targeting host cell functions, rather than the virus itself, could inhibit a large panel of RNA viruses. Some broad-spectrum antiviral compounds have been identified with host target-oriented assays. However, measuring the inhibition of viral replication in cell cultures using reduction of cytopathic effects as a readout still represents a paramount screening strategy. Such functional screens have been greatly improved by the development of recombinant viruses expressing reporter enzymes capable of bioluminescence such as luciferase. In the present report, we detail a high-throughput screening pipeline, which combines recombinant measles and chikungunya viruses with cellular viability assays, to identify compounds with a broad-spectrum antiviral profile.


Assuntos
Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Vírus do Sarampo/efeitos dos fármacos , Vírus Chikungunya/genética , Humanos , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Vírus do Sarampo/genética
18.
PLoS Pathog ; 9(10): e1003678, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098125

RESUMO

Searching for stimulators of the innate antiviral response is an appealing approach to develop novel therapeutics against viral infections. Here, we established a cell-based reporter assay to identify compounds stimulating expression of interferon-inducible antiviral genes. DD264 was selected out of 41,353 compounds for both its immuno-stimulatory and antiviral properties. While searching for its mode of action, we identified DD264 as an inhibitor of pyrimidine biosynthesis pathway. This metabolic pathway was recently identified as a prime target of broad-spectrum antiviral molecules, but our data unraveled a yet unsuspected link with innate immunity. Indeed, we showed that DD264 or brequinar, a well-known inhibitor of pyrimidine biosynthesis pathway, both enhanced the expression of antiviral genes in human cells. Furthermore, antiviral activity of DD264 or brequinar was found strictly dependent on cellular gene transcription, nuclear export machinery, and required IRF1 transcription factor. In conclusion, the antiviral property of pyrimidine biosynthesis inhibitors is not a direct consequence of pyrimidine deprivation on the virus machinery, but rather involves the induction of cellular immune response.


Assuntos
Infecções por Alphavirus/metabolismo , Antivirais/farmacologia , Vírus Chikungunya/metabolismo , Imunidade Inata/efeitos dos fármacos , Pirimidinas/biossíntese , Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/genética , Infecções por Alphavirus/imunologia , Animais , Antivirais/química , Febre de Chikungunya , Vírus Chikungunya/genética , Vírus Chikungunya/imunologia , Chlorocebus aethiops , Células HeLa , Humanos , Imunidade Inata/imunologia , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/imunologia , Fator Regulador 1 de Interferon/metabolismo , Pirimidinas/imunologia , Células Vero
19.
PLoS Negl Trop Dis ; 7(4): e2154, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593521

RESUMO

BACKGROUND/OBJECTIVES: Human leishmaniases are parasitic diseases causing severe morbidity and mortality. No vaccine is available and numerous factors limit the use of current therapies. There is thus an urgent need for innovative initiatives to identify new chemotypes displaying selective activity against intracellular Leishmania amastigotes that develop and proliferate inside macrophages, thereby causing the pathology of leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a biologically sound High Content Analysis assay, based on the use of homogeneous populations of primary mouse macrophages hosting Leishmania amazonensis amastigotes. In contrast to classical promastigote-based screens, our assay more closely mimics the environment where intracellular amastigotes are growing within acidic parasitophorous vacuoles of their host cells. This multi-parametric assay provides quantitative data that accurately monitors the parasitic load of amastigotes-hosting macrophage cultures for the discovery of leishmanicidal compounds, but also their potential toxic effect on host macrophages. We validated our approach by using a small set of compounds of leishmanicidal drugs and recently published chemical entities. Based on their intramacrophagic leishmanicidal activity and their toxicity against host cells, compounds were classified as irrelevant or relevant for entering the next step in the drug discovery pipeline. CONCLUSIONS/SIGNIFICANCE: Our assay represents a new screening platform that overcomes several limitations in anti-leishmanial drug discovery. First, the ability to detect toxicity on primary macrophages allows for discovery of compounds able to cross the membranes of macrophage, vacuole and amastigote, thereby accelerating the hit to lead development process for compounds selectively targeting intracellular parasites. Second, our assay allows discovery of anti-leishmanials that interfere with biological functions of the macrophage required for parasite development and growth, such as organelle trafficking/acidification or production of microbicidal effectors. These data thus validate a novel phenotypic screening assay using virulent Leishmania amastigotes growing inside primary macrophage to identify new chemical entities with bona fide drug potential.


Assuntos
Antiprotozoários/farmacologia , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Leishmania/patogenicidade , Macrófagos/parasitologia , Animais , Células Cultivadas , Leishmania/efeitos dos fármacos , Leishmaniose/parasitologia , Camundongos
20.
J Antimicrob Chemother ; 68(6): 1285-96, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23378416

RESUMO

OBJECTIVES: Candida albicans is the most prevalent fungal pathogen of humans, causing a wide range of infections from harmless superficial to severe systemic infections. Improvement of the antifungal arsenal is needed since existing antifungals can be associated with limited efficacy, toxicity and antifungal resistance. Here we aimed to identify compounds that act synergistically with echinocandin antifungals and that could contribute to a faster reduction of the fungal burden. METHODS: A total of 38 758 compounds were tested for their ability to act synergistically with aminocandin, a ß-1,3-glucan synthase inhibitor of the echinocandin family of antifungals. The synergy between echinocandins and an identified hit was studied with chemogenomic screens and testing of individual Saccharomyces cerevisiae and C. albicans mutant strains. RESULTS: We found that colistin, an antibiotic that targets membranes in Gram-negative bacteria, is synergistic with drugs of the echinocandin family against all Candida species tested. The combination of colistin and aminocandin led to faster and increased permeabilization of C. albicans cells than either colistin or aminocandin alone. Echinocandin susceptibility was a prerequisite to be able to observe the synergy. A large-scale screen for genes involved in natural resistance of yeast cells to low doses of the drugs, alone or in combination, identified efficient sphingolipid and chitin biosynthesis as necessary to protect S. cerevisiae and C. albicans cells against the antifungal combination. CONCLUSIONS: These results suggest that echinocandin-mediated weakening of the cell wall facilitates colistin targeting of fungal membranes, which in turn reinforces the antifungal activity of echinocandins.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Colistina/farmacologia , Equinocandinas/farmacologia , Animais , Antifúngicos/uso terapêutico , Candida/genética , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Quitina/biossíntese , Colistina/uso terapêutico , Corantes , Sinergismo Farmacológico , Equinocandinas/uso terapêutico , Biblioteca Gênica , Aptidão Genética , Genótipo , Técnicas de Diluição do Indicador , Lipopeptídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mutação/genética , Propídio , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Esfingolipídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA